433 research outputs found

    Fermat hypersurfaces and Subcanonical curves

    Full text link
    We extend the classical Enriques-Petri Theorem to ss-subcanonical projectively normal curves, proving that such a curve is (s+2)(s+2)-gonal if and only if it is contained in a surface of minimal degree. Moreover, we show that any Fermat hypersurface of degree s+2s+2 is apolar to an ss-subcanonical (s+2)(s+2)-gonal projectively normal curve, and vice versa.Comment: 18 pages; AMS-LaTe

    Universal Drinfeld-Sokolov Reduction and Matrices of Complex Size

    Full text link
    We construct affinization of the algebra glλgl_{\lambda} of ``complex size'' matrices, that contains the algebras gln^\hat{gl_n} for integral values of the parameter. The Drinfeld--Sokolov Hamiltonian reduction of the algebra glλ^\hat{gl_{\lambda}} results in the quadratic Gelfand--Dickey structure on the Poisson--Lie group of all pseudodifferential operators of fractional order. This construction is extended to the simultaneous deformation of orthogonal and simplectic algebras that produces self-adjoint operators, and it has a counterpart for the Toda lattices with fractional number of particles.Comment: 29 pages, no figure

    Deformation of canonical morphisms and the moduli of surfaces of general type

    Get PDF
    In this article we study the deformation of finite maps and show how to use this deformation theory to construct varieties with given invariants in a projective space. Among other things, we prove a criterion that determines when a finite map can be deformed to a one--to--one map. We use this criterion to construct new simple canonical surfaces with different c12c_1^2 and χ\chi. Our general results enable us to describe some new components of the moduli of surfaces of general type. We also find infinitely many moduli spaces M(x′,0,y)\mathcal M_{(x',0,y)} having one component whose general point corresponds to a canonically embedded surface and another component whose general point corresponds to a surface whose canonical map is a degree 2 morphism.Comment: 32 pages. Final version with some simplifications and clarifications in the exposition. To appear in Invent. Math. (the final publication is available at springerlink.com

    Fibonacci numbers and self-dual lattice structures for plane branches

    Full text link
    Consider a plane branch, that is, an irreducible germ of curve on a smooth complex analytic surface. We define its blow-up complexity as the number of blow-ups of points necessary to achieve its minimal embedded resolution. We show that there are F2n−4F_{2n-4} topological types of blow-up complexity nn, where FnF_{n} is the nn-th Fibonacci number. We introduce complexity-preserving operations on topological types which increase the multiplicity and we deduce that the maximal multiplicity for a plane branch of blow-up complexity nn is FnF_n. It is achieved by exactly two topological types, one of them being distinguished as the only type which maximizes the Milnor number. We show moreover that there exists a natural partial order relation on the set of topological types of plane branches of blow-up complexity nn, making this set a distributive lattice, that is, any two of its elements admit an infimum and a supremum, each one of these operations beeing distributive relative to the second one. We prove that this lattice admits a unique order-inverting bijection. As this bijection is involutive, it defines a duality for topological types of plane branches. The type which maximizes the Milnor number is also the maximal element of this lattice and its dual is the unique type with minimal Milnor number. There are Fn−2F_{n-2} self-dual topological types of blow-up complexity nn. Our proofs are done by encoding the topological types by the associated Enriques diagrams.Comment: 21 pages, 16 page

    Homological Type of Geometric Transitions

    Full text link
    The present paper gives an account and quantifies the change in topology induced by small and type II geometric transitions, by introducing the notion of the \emph{homological type} of a geometric transition. The obtained results agree with, and go further than, most results and estimates, given to date by several authors, both in mathematical and physical literature.Comment: 36 pages. Minor changes: A reference and a related comment in Remark 3.2 were added. This is the final version accepted for publication in the journal Geometriae Dedicat

    Risk-shifting Through Issuer Liability and Corporate Monitoring

    Get PDF
    This article explores how issuer liability re-allocates fraud risk and how risk allocation may reduce the incidence of fraud. In the US, the apparent absence of individual liability of officeholders and insufficient monitoring by insurers under-mine the potential deterrent effect of securities litigation. The underlying reasons why both mechanisms remain ineffective are collective action problems under the prevailing dispersed ownership structure, which eliminates the incentives to moni-tor set by issuer liability. This article suggests that issuer liability could potentially have a stronger deterrent effect when it shifts risk to individuals or entities holding a larger financial stake. Thus, it would enlist large shareholders in monitoring in much of Europe. The same risk-shifting effect also has implications for the debate about the relationship between securities litigation and creditor interests. Credi-tors’ claims should not be given precedence over claims of defrauded investors (e.g., because of the capital maintenance principle), since bearing some of the fraud risk will more strongly incentivise large creditors, such as banks, to monitor the firm in jurisdictions where corporate debt is relatively concentrated

    Efeito da utilização de surfactante no meio de coleta na taxa de recuperação embrionária em vacas superovuladas.

    Get PDF
    Edição dos resumos do XXI Annual Meeting of the Brazilian Embryo Technology Society (SBTE), Salvador, BA, ago. 2007

    Interacting Preformed Cooper Pairs in Resonant Fermi Gases

    Get PDF
    We consider the normal phase of a strongly interacting Fermi gas, which can have either an equal or an unequal number of atoms in its two accessible spin states. Due to the unitarity-limited attractive interaction between particles with different spin, noncondensed Cooper pairs are formed. The starting point in treating preformed pairs is the Nozi\`{e}res-Schmitt-Rink (NSR) theory, which approximates the pairs as being noninteracting. Here, we consider the effects of the interactions between the Cooper pairs in a Wilsonian renormalization-group scheme. Starting from the exact bosonic action for the pairs, we calculate the Cooper-pair self-energy by combining the NSR formalism with the Wilsonian approach. We compare our findings with the recent experiments by Harikoshi {\it et al.} [Science {\bf 327}, 442 (2010)] and Nascimb\`{e}ne {\it et al.} [Nature {\bf 463}, 1057 (2010)], and find very good agreement. We also make predictions for the population-imbalanced case, that can be tested in experiments.Comment: 10 pages, 6 figures, accepted version for PRA, discussion of the imbalanced Fermi gas added, new figure and references adde

    Four lectures on secant varieties

    Full text link
    This paper is based on the first author's lectures at the 2012 University of Regina Workshop "Connections Between Algebra and Geometry". Its aim is to provide an introduction to the theory of higher secant varieties and their applications. Several references and solved exercises are also included.Comment: Lectures notes to appear in PROMS (Springer Proceedings in Mathematics & Statistics), Springer/Birkhause
    • …
    corecore